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Abstract: A multiplet calculus is presented for an arbitrary number n of N = 2 ten-

sor supermultiplets. For rigid supersymmetry the known couplings are reproduced. In

the superconformal case the target spaces parametrized by the scalar fields are cones over

(3n − 1)-dimensional spaces encoded in homogeneous SU(2) invariant potentials, subject

to certain constraints. The coupling to conformal supergravity enables the derivation of a

large class of supergravity Lagrangians with vector and tensor multiplets and hypermul-

tiplets. Dualizing the tensor fields into scalars leads to hypermultiplets with hyperkähler

or quaternion-Kähler target spaces with at least n abelian isometries. It is demonstrated

how to use the calculus for the construction of Lagrangians containing higher-derivative

couplings of tensor multiplets. For the application of the c-map between vector and tensor

supermultiplets to Lagrangians with higher-order derivatives, an off-shell version of this

map is proposed. Various other implications of the results are discussed. As an example

an elegant derivation of the classification of 4-dimensional quaternion-Kähler manifolds

with two commuting isometries is given.
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1. Introduction

The importance of off-shell methods for the construction of supersymmetric Lagrangians

is well known. For N = 2 supersymmetry in four space-time dimensions the most rele-

vant off-shell supermultiplets are the Weyl, the vector and the tensor supermultiplet. The

Weyl supermultiplet comprises the fields of conformal supergravity, whereas the other two

multiplets play the role of matter multiplets. The hypermultiplet does not constitute an

off-shell multiplet, unless one introduces an infinite number of fields. This paper deals with

N = 2 tensor supermultiplets whose off-shell formulation has a long history. In [1] the

multiplet emerged as a submultiplet of off-shell N = 2 supergravity. Its transformation

rules in a general superconformal background were presented in [2] and a locally super-

conformally invariant Lagrangian for a single tensor multiplet was written down in [3].

The latter enabled the derivation of an alternative minimal off-shell formulation of N = 2

supergravity.

In four space-time dimensions it is possible to dualize a rank-two tensor gauge field

into a scalar field. In this way actions of tensor supermultiplets lead to corresponding

supersymmetric actions for hypermultiplets. The resulting hypermultiplet target space
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will then have a group of abelian isometries induced by the gauge invariance of the tensor

fields. In the case of rigid supersymmetry the hypermultiplets parametrize a hyperkähler

space. In [4, 5] the N = 1 superspace formulation was used to classify, upon dualization,

4n-dimensional hyperkähler metrics with n abelian isometries. The Lagrangians are en-

coded in terms of a function subject to certain partial differential equations, which can be

elegantly written in terms of a contour integral depending on the tensor multiplet scalars.

Furthermore a first N = 2 superspace formulation was presented in [6] in which this contour

integral played a central role.

In the context of local N = 2 supersymmetry one is interested in superconformal

tensor multiplets. The scalar fields then parametrize target spaces which are cones over a

(3n − 1)-dimensional space. When coupling these supermultiplets, together with at least

one vector multiplet and possible hypermultiplets, to conformal supergravity, the resulting

theory is gauge equivalent to Poincaré supergravity coupled to matter fields. In this gauge

equivalence the number of matter multiplets is reduced by two. This is so because part of

the components belonging to the two, so-called compensating, supermultiplets correspond

to superconformal gauge degrees of freedom. Upon gauge fixing the remaining components

of these multiplets combine with the fields of the Weyl multiplet to constitute an off-shell

multiplet of Poincaré supergravity. There is a certain freedom in choosing compensator

multiplets, which leads to different off-shell versions of Poincaré supergravity. The more

conventional one employs a compensating vector multiplet and a hypermultiplet, but the

hypermultiplet can be replaced by a compensating tensor multiplet. These two choices

do in certain cases lead to the same theory as the tensor fields can be dualized to scalar

fields in which case the hypermultiplet target space becomes a quaternion-Kähler space.

However, the dualization affects the off-shell supersymmetry structure.

When dualizing superconformal Lagrangians of tensor multiplets one obtains 4n-di-

mensional hyperkähler cones [7]. The latter are cones over (4n−1)-dimensional 3-Sasakian

spaces, which in turn are Sp(1) fibrations of (4n−4)-dimensional quaternion-Kähler spaces.

In this context the gauge-fixing of the compensating degrees of freedom is known as a

superconformal quotient and this quotient was extensively studied in [8]. The hyperkähler

cones are encoded in so-called hyperkähler potentials and it turns out that there exits a

similar real function for superconformal tensor multiplets that is homogeneous and SU(2)

invariant. Just like the function exploited in [4, 5] it is subject to a set of partial differential

equations. When applied to a single tensor supermultiplet acting as a compensator (in

addition to a compensator vector supermultiplet), one recovers the results of [3] for pure

supergravity with a tensor gauge field and local U(1) invariance. In this setting the tensor

field does not describe dynamic degrees of freedom. For two tensor multiplets one finds

pure supergravity with an additional matter multiplet, which contains two scalar and

two tensor fields. Upon dualization of the tensor fields one obtains supergravity coupled

to a single hypermultiplet whose target space defines a 4-dimensional quaternion-Kähler

space. Solving the differential equations for the SU(2) invariant potential of the tensor

formulation, one elegantly reproduces the general classification of the corresponding 4-

dimensional metrics with two commuting Killing fields [9]. They include the metric of the

so-called universal hypermultiplet as a special case.
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We should stress here that the above discussion is based on off-shell supermultiplets.

When one is just interested in supersymmetric Lagrangians involving tensor fields, there

are many more possibilities, as one can always dualize tensor gauge fields into scalar fields

and, provided there are abelian isometries, vice versa. For a general discussion of N = 2

supersymmetric Lagrangians involving tensor and scalar fields, we refer to [10]. Naturally,

these general Lagrangians are not encoded in a single function, unlike the Lagrangians

derived through the superconformal quotient, but there are good reasons to believe that

they can be derived from the same formalism by a series of dualizations [8].

The superconformal quotient for tensor supermultiplets was extensively discussed in [8]

without paying attention to the details of their supergravity couplings. The first topic of

this paper is therefore to extend the results of [3] to an arbitrary number of tensor super-

multiplets. In the case of rigid supersymmetry, the results of this paper are completely in

accord with [5]. It turns out that the coupling to conformal supergravity is straightforward

in the present framework. The results can be used in the context of string compactifica-

tions where tensor fields arise naturally. Some of the results of this paper have already been

exploited to derive string-loop corrected hypermultiplet metrics for type-II string theory

compactified on a generic Calabi-Yau threefold [11]. Our work also has some overlap with,

for example, that of [12] where dimensional reductions of five-dimensional supergravity

theories are studied. For general gaugings the situation is less clear. It is known that mag-

netic background fluxes generically require the presence of tensor fields, which, however,

acquire non-trivial mass terms [13 – 15]. Whether or not these tensor fields are in some

way related to the tensor fields that are discussed here, is yet an open issue.

The results of this paper also enable the construction of higher-derivative actions for

tensor supermultiplets. These actions contain terms of fourth order in space-time deriva-

tives. We will demonstrate this by presenting one non-trivial example of such an action for a

single tensor supermultiplet, encoded in a single function subject to differential constraints.

To couple such an action to supergravity is straightforward and one has an additional op-

tion of including independent couplings with the Weyl multiplet or with vector multiplets

in the form of a chiral background [16]. We intend to give a more complete presentation

of these higher-derivative couplings elsewhere.

Vector supermultiplets can also have higher-derivative couplings. Also here we distin-

guish between vector multiplet couplings with the Weyl multiplet through a chiral back-

ground, and actions which contain ab initio higher-derivatives of the vector multiplet com-

ponents themselves. The former are the ones relevant for the topological string [17] and

have played an important role in the comparison between microscopic and macroscopic

black hole entropy [18]. The latter are of the type studied, for example, in [19]. All these

higher-order actions will undoubtedly contribute to the Wald entropy [20], which was cru-

cial for obtaining agreement between microscopic and macroscopic black hole entropy at

the subleading level in the limit of large charges.

It is clearly of interest to investigate on a par the higher-derivative couplings for both

tensor and vector supermultiplets, as those are expected to be related by the so-called

c-map [21]. Conventionally, the c-map is applied on the basis of actions that are at most

quadratic in space-time derivatives [22 – 25]. In this way classical tensor (and thus hy-
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permultiplet) moduli spaces that appear in compactifications of type-II strings can be

determined from vector moduli spaces, as a result of T-duality. When considering actions

with higher-order derivatives, also derivatives of auxiliary fields appear. Therefore we also

study the definition of c-map for full off-shell supermultiplets, independent of the actions

considered. The application of the c-map to higher-order derivative couplings was discussed

in [26, 27] and in a recent paper [24].

This paper is organized as follows. In section 2 we discuss the tensor supermultiplets

in the context of rigid supersymmetry. Following and extending the results of [3], we con-

struct composite chiral multiplets in terms of tensor multiplet components. Subsequently

we proceed to derive invariant actions. Furthermore we show how superconformally in-

variant actions are encoded in terms of a homogeneous SU(2) invariant potential, similar

to the hyperkähler potentials for superconformal hypermultiplet Lagrangians. In section 3

we analyze the off-shell version of the c-map between vector and tensor multiplets and

we present a nontrivial example of a supersymmetric action for a tensor supermultiplet

involving higher-order derivatives. In section 4 we consider the coupling of tensor multi-

plets to conformal supergravity. In section 5 we discuss the superconformal quotient for

Lagrangians involving tensor and vector multiplets and hypermultiplets to obtain Poincaré

supergravity theories with tensor multiplets. To demonstrate the virtues of our formulation

we consider the case of two tensor multiplets and evaluate the differential equations for

the SU(2) invariant potential of the tensor formulation to obtain the classification of the

corresponding 4-dimensional selfdual Einstein metrics with two commuting Killing fields.

Finally some details of the superconformal calculus are presented in an appendix.

2. Rigid tensor multiplet couplings

The N = 2 tensor multiplet can be realized off-shell in a general superconformal back-

ground. In this section we consider the case of rigid supersymmetry in flat Minkowski

space. The tensor supermultiplet is described in terms of a tensor gauge field Eµν , an

SU(2) triplet of scalar fields Lij, a doublet of Majorana spinors ϕi and an auxiliary com-

plex scalar G. The supersymmetry transformation rules can be written as follows [2],

δLij = 2 ε̄(iϕj) + 2 εikεjl ε̄
(kϕl) ,

δϕi = /∂Lij εj + εij /E εj −Gεi ,
δG = −2ε̄i /∂ϕ

i ,

δEµν = iε̄iγµνϕ
j εij − iε̄iγµνϕj εij , (2.1)

where (anti)symmetrization is always defined with unit strength (unlike in [3]). Gamma

matrices γµν··· with multiple indices denote antisymmetrized products of gamma matri-

ces in the usual fashion. We recall that εi and ϕi are positive-chirality spinors whose

negative-chirality counterparts are denoted by εi and ϕi, respectively. Furthermore, Eµ =
1
2 iεµνρσ∂νEρσ is the invariant field strength of the tensor field. The scalar field Lij satis-

fies a reality constraint, Lij = εikεjl Lkl. Complex conjugation is effected by raising and

lowering of SU(2) indices, i, j, k, . . .. Throughout this paper we use Pauli-Källén metric

conventions.
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2.1 Composite reduced chiral supermultiplets

Supersymmetric Lagrangians with at most two space-time derivatives can be constructed

by making use of the observation that a tensor multiplet can couple linearly to a reduced

chiral multiplet. The latter supermultiplet comprises a complex scalar X, an antisymmetric

tensor Fµν , a (negative-chirality) spinor doublet Ωi and a triplet of auxiliary scalars Y ij .

Its supersymmetry transformations are as follows,

δX = ε̄iΩi ,

δΩi = 2 /∂X εi + 1
2εij γ

µνFµν ε
j + Yij ε

j ,

δF−µν = 1
2 ε̄i/∂γµνΩj ε

ij − 1
2 ε̄
iγµν /∂Ωj εij ,

δYij = 2 ε̄(i /∂Ωj) + 2 εikεjl ε̄
(k /∂Ωl) . (2.2)

Here F−µν is the antiselfdual component of the tensor Fµν , whose complex conjugate equals

F+
µν . Because we are dealing with a reduced chiral multiplet, Y ij satisfies a reality con-

straint, Y ij = εikεjl Ykl and Fµν satisfies a Bianchi identity, ∂[µFνρ] = 0. The latter can be

solved (at least locally) so that Fµν acquires the form Fµν = ∂µWν − ∂νWµ. The resulting

vector supermultiplet can then be completed by specifying the transformation rule for Wµ,

δWµ = ε̄iγµΩj ε
ij + ε̄iγµΩj εij . (2.3)

As is well-known, there exists a non-abelian version of this multiplet which will, however,

not be needed in what follows.

The supersymmetric coupling of a tensor to a reduced chiral multiplet takes the form,

L = X G+ X̄ Ḡ− 1
2Y

ij Lij + ϕ̄i Ωi + ϕ̄i Ωi − 1
4 i ε

µνρσ Eµν Fρσ . (2.4)

This expression can be used to derive supersymmetric Lagrangians for tensor multiplets, as

was already demonstrated in [28, 3]. This derivation is based on the observation that one

can construct a reduced chiral multiplet from tensor multiplet components. When substi-

tuting the components of this composite multiplet into (2.4) one obtains a supersymmetric

Lagrangian for the tensor multiplet.

In order to construct n reduced chiral multiplets from n tensor multiplets, one must

introduce a (real) function FI,J(L) of the tensor multiplet scalars LijI , where we label the n

tensor supermultiplets by upper indices I, J, . . . = 1, 2, . . . , n. The reduced chiral multiplet

to which each tensor multiplet couples is then assigned a lower index I. The construction

starts from the lowest component of the chiral multiplet, which is given by

XI = FI,J(L) ḠJ + FI,J,Kij(L) ϕ̄i
Jϕj

K , (2.5)

where

FI,J,Kij(L) =
∂FI,J(L)

∂LijK
. (2.6)

We note that FI,J,Kij satisfies the same reality constraint as the fields Lij
I . Hence its SU(2)

indices can be raised by complex conjugation, or alternatively, by contraction with epsilon
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tensors. Such quantities define real SU(2) vectors and their products satisfy certain product

relations which reflect their decomposition in terms of irreducible SU(2) representations.

We present two of them, which are used throughout this paper. The products of two such

real vectors, Lij and Kij , satisfy

Kik L
jk +Kjk Lik = δji Kkl L

kl ,

Kij Lkl −Kkl Lij = εik ε
mn (Klm Lnj +Kjm Lnl)

∣∣∣
(i,j) (k,l)

, (2.7)

where the right-hand side of the second equation is symmetrized in (i, j) and (k, l). These

identities can be used with Kij or Lij equal to Lij
I or FI,J,Kij.

To ensure that we are dealing with a chiral multiplet the supersymmetry transforma-

tion of the composite field XI has to be of the form (2.2). Up to terms cubic in the spinors

ϕi
I this imposes that the derivative FI,J,Kij must be symmetric in (JK). The higher-order

spinor terms require a second condition, namely,

FI,J,Kij,Lkl(L) (ϕ̄i
Kϕj

J) ϕk
L = 0 , (2.8)

where we defined

FI,J,Kij,Lkl(L) =
∂2FI,J(L)

∂LijK ∂LklL
. (2.9)

When FI,J,Kij,Lkl(L) is symmetric in (jk) the cubic spinor term (2.8) vanishes. It is there-

fore guaranteed that we are dealing with a chiral multiplet once the following constraints

are satisfied by the function FI,J ,

FI,J,Kij = FI,K,Jij , εjk FI,J,Kij,Lkl(L) = 0 . (2.10)

As it turns out these constraints also suffice to ensure that we are dealing with a reduced

chiral multiplet.

The function FI,J has no particular symmetry in I and J . From the constraints (2.10)

it follows that its derivatives with respect to the LijK are independently symmetric under

the capital indices J,K, . . . and under the SU(2) indices i, j, k, l, . . .. This motivates us to

use an obvious notation FI,J1···Jp+1j1···j2p for the p-th multiple derivative, which is symmetric

in both the p+ 1 indices {J} and in the 2 p indices {j}.
Henceforth we assume that the conditions (2.10) are satisfied. From the variation

of (2.5) we determine the composite spinor field ΩiI of the chiral multiplet,

Ωi I = −2FI,J /∂ϕiJ + 2FI,JKij ḠJ ϕjK − 2FI,JKkl ( /∂LikJ − εik /EJ)ϕl
K

+ 2FI,JKLijkl ϕjL (ϕ̄k
Jϕl

K) . (2.11)

The supersymmetry variation of Ωi I yields the expressions for Yij I and Fµν I , while all

remaining variations correctly recombine into the derivative ∂µXI . The explicit expressions

for the new fields read,

Yij I = −2FI,J ∂2Lij
J − 2FI,JKij (ḠJ GK +Eµ

J EµK) ,

− 2FI,JKkl (∂µLikJ ∂µLjlK + 2 εk(i ∂µLj)l
J EµK)

– 6 –
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− 2FI,JKLijkl ϕ̄kKϕlJ GL − 2FI,JKLijkl ϕ̄kKϕlJ ḠL

+ 4 (FI,JKm(i ϕ̄
mJ /∂ϕj)

K + FI,JKm(kϕ̄m
J /∂ϕl)K εik εjl)

+ 4FI,JKLn(i
kl ∂µLj)k

J
(
ϕ̄nLγµϕl

K
)

− 4FI,JKLn(i
kl εj)k

(
ϕ̄nL /EJ ϕl

K
)

− 2FI,JKLMijmn
kl ϕ̄k

Jϕl
K ϕ̄mLϕnM ,

Fµν I = − 2FI,JKmn ∂[µLmk
J ∂ν]Lnl

K εkl

− 4 ∂[µ

(
FI,J Eν]

J + FI,JKki ϕ̄kJγν]ϕj
K εij

)
. (2.12)

The results can be compared to the corresponding ones given in [3]. In order that we are

dealing with a single reduced chiral superfield for given index I, it is important that FI,J is a

real function. This enables the use of identities such as (2.7). These identities and (2.10) are

used throughout the calculation. The Bianchi identity holds for Fµν I , although the second

term proportional to ∂[µL∂ν]L is somewhat subtle. By virtue of (2.10) the contribution of

this term, ∂[µFνρ] ∝ FI,JKLijklεmn ∂[µL
ijJ ∂νL

kmK ∂ρ]L
lnL, vanishes so that Fµν is closed.

However, Fµν is not exact in the sense that it cannot be written as the curl of a manifestly

SU(2) invariant quantity. We will exhibit this below.

Let us now discuss the constraints (2.10). To analyze their implications, we decompose

the field LijI into a real field xI and a complex field vI according to,

L12 I ≡ 1
2 ixI , L11 I ≡ vI , (2.13)

so that LIijL
ij J = 1

2x
IxJ + 2 v(I v̄J). The constraints (2.10) then take the following form,1

∂FI,J
∂xK

=
∂FI,K
∂xJ

,
∂FI,J
∂vK

=
∂FI,K
∂vJ

,

∂2FI,J
∂xK∂xL

+
∂2FI,J
∂vK∂v̄L

= 0 . (2.14)

The last equation, which simply follows from FI,JKLijij = 0, contains the SU(2) invariant

Laplacian,

1
2 εikεjl

∂2

∂LijI ∂LklJ
=

∂2

∂xI ∂xJ
+

∂2

∂v(I ∂v̄J)
. (2.15)

As a consequence of the first equation of (2.14), FI,J can be expressed as a derivative of a

new function FI which is, however, still constrained,

FI,J =
∂FI
∂xJ

,
∂2FI

∂xJ∂vK
=

∂2FI
∂xK∂vJ

,

∂2FI
∂xJ∂xK

+
∂2FI

∂vJ∂v̄K
= 0 . (2.16)

The last equation of (2.16) was determined by integrating the last equation of (2.14) which

leaves a real function on the right-hand side that does not depend on x. However, dif-

ferentiation with respect to vL (or v̄L) yields a function symmetric in (J, L) (or (K,L))

1Derivatives with respect to Lij
I are defined by ∂

∂Lij
J Lkl

I = 1
2

`
δik δ

j
l + δil δ

j
k

´
δIJ , so that δLij

I∂/∂LIij =

δxI∂/∂xI + δvI∂/∂vI + δv̄I∂/∂v̄I .

– 7 –
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which implies that the right-hand side can be written as the ∂2/∂vJ∂v̄K derivative of some

function of v and v̄. As FI is defined up to an x-independent function, the latter can be

absorbed into FI .
With these results we can now exhibit that the expression for Fµν I given in (2.12)

takes indeed the form of a curl,

FI,JKij ∂[µLik
J ∂ν]Ljl

K εkl = i ∂[µ

(∂FI
∂v̄J

∂ν]v̄
J − ∂FI

∂vJ
∂ν]v

J
)
, (2.17)

so that the Bianchi identity is manifestly satisfied.

Let us close with two examples which lead to Lagrangians (constructed according

to the procedure outlined in the next subsection) that are both dual to non-interacting

hypermultiplets. One concerns the simple example where FI,J = δIJ is L-independent.

This example trivially satisfies the constraints (2.10). One possible expression for FI takes

the form,

FI = xI + cIJ v
J + c̄IJ v̄

J , (2.18)

with cIJ some complex constants. A second example is based on the conformal tensor

multiplet introduced in [3, 4], where FI,J = δIJ (LI)−1 with LI =
√
LijI LijI , so that, for

I, J,K,L equal,

FI,JKij(L) = − Lij
I

(LI)3
, FI,JKLijkl(L) =

3Lij
I Lkl

I + (LI)2 εi(kεl)j

(LI)5
, (2.19)

which satisfies the constraints (2.10). A corresponding expression for FI is given by

FI =
√

2 ln
[
xI +

√
xIxI + 4 vI v̄I

]
− 1

2

√
2 ln

[
4 vI v̄I

]
. (2.20)

2.2 Supersymmetric tensor multiplet actions

We now proceed to give the rigidly supersymmetric tensor multiplet Lagrangian obtained

by substituting the composite fields (2.5), (2.11) and (2.12) into the density formula (2.4).

Up to total derivatives the Lagrangian equals

L = FIJ

[
− 1

2∂µLij
I ∂µLijJ +EIµE

µJ − (ϕ̄iI /∂ϕi
J + ϕ̄i

I /∂ϕiJ ) +GI ḠJ
]

+ 1
2 ie
−1εµνρσ FIJK

ij EIµν ∂ρLik
J ∂σLjl

K εkl

− FIJKij
[
ϕ̄kI /∂Ljk

J ϕi
K −GI ϕ̄iJϕjK

]

− FIJK ij

[
ϕ̄k

I /∂LjkJ ϕiK − ḠI ϕ̄iJϕjK
]

+ 2FIJK
ij εki ϕ̄

kI /EJ ϕj
K

+ FIJKL ij
kl ϕ̄k

I ϕl
J ϕ̄iKϕjL , (2.21)

where

FIJ = 2F(I,J) + LijK FK,IJij ,

FIJK
ij = 3F(I,JK)

ij + LklLFL,IJKklij =
∂FIJ
∂LijK

,
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FIJKL ij
kl = 4F(I,JKL)ij

kl + LmnMFM,IJKLmnij
kl =

∂2FIJ
∂LijK∂LklL

. (2.22)

We note that the tensor gauge field always appears in form of the covariant field strength

Eµ, with the exception of the second line proportional to εµνρσ . This term is nevertheless

invariant under tensor gauge transformations, up to a total derivative, owing to the Bianchi

identity satisfied by the L-dependent terms. In the basis (2.13), this term can be rewritten

in terms of the tensor field strength after partial integration, as we shall discuss shortly

(c.f. (2.28)).

The Lagrangian is encoded in the function FIJ and its derivatives. Making use of (2.16),

the functions FIJ can be written as follows,

FIJ =
∂FI
∂xJ

+
∂FJ
∂xI

+ xK
∂2FK
∂xI∂xJ

+ vK
∂2FK
∂xI∂vJ

+ v̄K
∂2FK
∂xI∂v̄J

,

=
∂

∂xI

[
FJ + xK

∂FK
∂xJ

+ vK
∂FK
∂vJ

+ v̄K
∂FK
∂v̄J

]
. (2.23)

This expression is symmetric in (I, J). Thus the terms inside the bracket are equal to the

xJ -derivative of another function. Therefore FIJ can be written as the second x-derivative

of some unknown function F (x, v, v̄). Integrating (2.23) yields the first derivative of F ,

∂F

∂xJ
= FJ + xK

∂FK
∂xJ

+ vK
∂FK
∂vJ

+ v̄K
∂FK
∂v̄J

, (2.24)

up to an x-independent function which we set to zero. Next we evaluate ∂2F/∂vI × ∂xJ
and establish its symmetry in (I, J) from (2.16). Furthermore we verify that

∂

∂xI

[ ∂2F

∂xJ∂xK
+

∂2F

∂vJ∂v̄K

]
= 0 , (2.25)

making use again of (2.16). By following the same argument as below (2.16), one then

establishes the existence of a function F subject to the equations,

∂2F

∂xI∂vJ
=

∂2F

∂xJ∂vI
,

∂2F

∂xI∂xJ
+

∂2F

∂vI∂v̄J
= 0 . (2.26)

The Lagrangian is thus encoded in functions F (x, v, v̄), with

FIJ =
∂2F

∂xI∂xJ
, (2.27)

and F (x, v, v̄) subject to the conditions (2.26). This result is entirely consistent with the

results derived in [4, 5], where it was shown how to express the function F (x, v, v̄) in terms

of a contour integral.

Using the above relations we derive, along the same lines as in (2.17), the relation,

FIJK
ij ∂[µLik

J ∂ν]Ljl
K εkl = i ∂[µ

( ∂2F

∂xI ∂v̄J
∂ν]v̄

J − ∂2F

∂xI ∂vJ
∂ν]v

J
)
. (2.28)

This result is needed when dualizing the tensor fields to scalars. In that case the super-

symmetry is no longer realized off shell. One introduces a new set of fields, yI , which act as
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Lagrange multipliers to impose the Bianchi identity on the tensor field strength. Adding

the term yI ∂µE
µI to the Lagrangian and integrating out the EµI , one obtains an action

for hypermultiplets. A natural set of complex variables then consists of the complex fields

vI and wI . The latter are defined by [8]

wI =
1

2

(
iyI +

∂F

∂xI

)
. (2.29)

In terms of these fields the kinetic term of the scalar fields reads,

L = −FIJ ∂µvI∂µv̄J − F IJ
(
∂µwI −

∂2F

∂xIvK
∂µv

K
)(
∂µw̄J −

∂2F

∂xJ v̄L
∂µv̄L

)
, (2.30)

where F IJ is the inverse of FIJ .

For completeness we present the functions F (x, v, v̄) corresponding to the two exam-

ples (2.18) and (2.20), respectively,

F (x, v, v̄) =
∑

I

{
(xI)2 − 2 vI v̄I

}
,

F (x, v, v̄) =
√

2
∑

I

{
xI ln

[
xI +

√
(xI)2 + 4 vI v̄I

]
+ 1

2(1− xI) ln
[
4 vI v̄I

]

−
√

(xI)2 + 4 vI v̄I
}
. (2.31)

2.3 Superconformal actions and tensor and hyperkähler cones

So far our analysis was completely general and we did not insist on any additional invariance

beyond N = 2 supersymmetry. However, a tensor supermultiplet can be assigned to a

representation of the full N = 2 superconformal algebra and the function FI,J can be

chosen such that the composite chiral supermultiplet constitutes also a superconformal

representation. By substituting the superconformally invariant composite chiral multiplets

into the density formula these symmetries carry over to the Lagrangian. The class of

superconformal actions is encoded by functions FI,J that satisfy the additional restriction,

FI,JKik LkjK = −1
2δi

j FI,J . (2.32)

This condition, which will be derived in section 4, implies that FI,J is a homogeneous

function of the LijI of degree −1 that is invariant under the SU(2) R-symmetry. It is easy

to see that the function FIJ that appears in the Lagrangian (2.21), is thus also homogeneous

of degree −1 and SU(2) invariant. Upon contraction with Ljm
J one proves another useful

result,

FI,JKij LklJ LklK = −FI,J LijJ , (2.33)

which is needed later on. The same result applies to FIJ .

The constraint (2.32) implies that the function FI can be restricted to a homogeneous

function of zeroth degree, but, in general, it is only invariant under a U(1) subgroup of the

SU(2) R-symmetry. The superconformal constraints on the function F (x, v, v̄), which is a
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homogeneous function of degree +1, were extensively analyzed in [8]. For convenience, we

summarize the conditions on the function FIJ . In the general case we have the constraints,

FIJK
ij = F(IJK)

ij , FIJKL
i[jk]l = 0 . (2.34)

For conformally invariant Lagrangians there is the additional constraint,

FIJKik L
kjK = −1

2δi
j FIJ . (2.35)

When keeping one of the components in the triplet Lij
I , xI say, fixed the remaining

complex components vI parameterize a Kähler space whose corresponding Kähler potential

is equal to the function −F (x, v, v̄). In the conformally invariant case a similar potential

exists for the target space parametrized by the Lij
I , which is defined by the SU(2) invariant

expression,

χtensor(L) = 2FIJ L
ijILij

J , (2.36)

and is a homogeneous function of degree +1. This potential is closely related to the so-

called hyperkähler potential that plays a similar role in the hypermultiplet case. To see

this we first note that its derivative with respect to LI is equal to the homothetic vector,

∂χtensor(L)

∂LijI
= 2FIJL

ijJ . (2.37)

This vector generates the scale transformations on Lij
I with scaling weight equal to 2.

Furthermore we establish that the metric FIJ is related to the second-order derivative of

the potential, according to

εkl
∂2χtensor(L)

∂LikI ∂LjlJ
= 2FIJ (L) εij . (2.38)

This implies that the 3n-dimensional target space parametrized by the Lij
I is a cone over

a (3n − 1)-dimensional space. One can show that the potential χtensor fully encodes the

superconformal theories of tensor supermultiplets. From it the function F (x, v, v̄) can be

determined by integration. In section 5 the role of χtensor will be clarified further.

To elucidate the above, let us formulate it in terms of the variables vI , v̄I and xI .

Using (2.27) one establishes the following identity,

χtensor(L) = FIJ(xIxJ + 4 vI v̄J ) = −F (v, v̄, x) + xI
∂F (x, v, v̄)

∂xI
, (2.39)

where we made use of the various identities for derivatives of the function F (x, v, v̄). The

right-hand side of (2.39) coincides with the expression for the hyperkähler potential given

in [8] for the hyperkähler cones that one obtains upon dualizing the tensor fields to scalars.

Here the xI are expressed in terms of the coordinates wI + w̄I given in (2.29). Obviously

the hyperkähler potential χhyper(wI , w̄I , v
I , v̄I) and the function F (x, v, v̄) are related by a

Legendre transform.

The formalism of this paper makes it straightforward to incorporate the coupling of

tensor supermultiplets to conformal supergravity. In [3] this was demonstrated for a single

tensor supermultiplet and in section 4 we will generalize this result to n tensor supermul-

tiplets. Before turning to this topic we first discuss a number of other features in the next

section.
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3. Off-shell c-map and higher-derivative actions

We have already stressed the importance of dealing with off-shell supermultiplets which

offer many technical advantages. In the first subsection 3.1 we will illustrate this once more

by introducing the c-map between off-shell tensor and vector supermultiplets, outside the

context of specific supersymmetric actions. The fact that the c-map can be defined in this

way is crucial for its application to higher-derivative actions, where the existence of an

off-shell formulation is almost imperative. Without off-shell multiplets higher-derivative

actions can only be constructed by an infinite series of iterations. Therefore we also briefly

consider the construction of higher-derivative couplings of tensor supermultiplets in a sec-

ond subsection 3.2. The coupling to supergravity will be the subject of later sections,

but we will already present the extra bosonic terms that are generated in the coupling to

supergravity.

3.1 The off-shell c-map

As is well known, four-dimensional vector- and hypermultiplet actions are related to each

other via the so-called c-map. Originally [21] this map was constructed by performing a

dimensional reduction of the four-dimensional action on a circle and dualizing the three-

dimensional vector field to a scalar. Because these operations do not affect supersymme-

try, the vector multiplets are converted into hypermultiplets, so that one will be dealing

with two hypermultiplet sectors. Interchanging the two sectors and lifting back to a four-

dimensional action (assuming that the initial hypermultiplet sector is itself in the image

of the c-map) yields the desired map between vector- and hypermultiplet sectors in four

dimensions.

A more natural way to define the c-map is by comparing a dimensionally reduced vector

supermultiplet to a dimensionally reduced tensor supermultiplet. Indeed it is immediately

clear that there exists a close relationship between the off-shell degrees of freedom. When

reducing on a circle in the 3-direction, the space-time coordinate vector xµ decomposes into

a three-dimensional space-time vector xµ̂ (µ̂ = 0, 1, 2) and a single coordinate x3 which will

be shrunk to a point so that the fields become x3-independent. In this way the bosonic

fields of the tensor multiplet decompose according to,

{
Lij , E

µ, G, Ḡ
}
−→

{
Lij, E

µ̂, E3, G, Ḡ
}
, (3.1)

where Eµ̂ is a divergence-free vector field. Likewise the bosonic fields of the (abelian)

vector multiplet decompose according to,

{
X, X̄, Fµν , Y

ij
}
−→

{
X, X̄, Fµ̂3, Fµ̂ν̂ , Y

ij
}
∼
{
X, X̄,W3, F

µ̂, Y ij
}
. (3.2)

In the last step we made use of the Bianchi identity satisfied by Fµν , which implies that Fµ̂ν̂
is equivalent to a divergence-free three-vector F µ̂ = 1

4 iεµ̂ν̂ρ̂Fν̂ρ̂ and that Fµ̂3 can be written

as the derivative of a scalar field W3. Hence the two multiplets are very similar. They both

comprise a single divergence-free vector, three physical scalars and three auxiliary scalars,

and they have the same number of fermionic degrees of freedom. Both divergence-free
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vectors can be expressed in terms of a vector potential which coincides (up to a gauge

transformation) with Eµ̂3 and Wµ̂, respectively.

The relation between the two supermultiplets becomes even more striking upon real-

izing that the R-symmetry group, the relativistic automorphism group of the supersym-

metry algebra, which equals SU(2) × U(1) in four space-time dimensions, is extended to

SU(2) × SU(2) in three space-time dimensions. Since the action of the U(1) subgroup is

known on the four-dimensional fields, it is not difficult to deduce the representation content

of the fields in three dimensions. Obviously, the fermionic fields must transform according

to the (2, 2) representation of SU(2) × SU(2), while the triplets Yij and Lij transform ac-

cording to the (3, 1) representation. Finally the triplets {X, X̄,W3} and {G, Ḡ,E3} must

transform according to the (1, 3) representation. Obviously the two off-shell multiplets are

the same and only differ in their identification with the SU(2) factors of the R-symmetry

group.

The above conclusions are confirmed by an evaluation of the supersymmetry trans-

formation rules in the three-dimensional context, following [29]. First we define gamma

matrices γ̂µ̂ that are appropriate for the three-dimensional theory,

γ̂µ̂ = γµ̂ γ̃ , (3.3)

where γ̃ = −iγ3γ5 is an hermitean matrix whose square is equal to the identity matrix. The

product γ̂0γ̂1γ̂2 is proportional to the identity matrix. The hermitean matrices γ̃, γ3 and

γ5 commute with the γ̂ µ̂ and constitute the generators of an su(2) algebra that is related

to the second SU(2) factor of the R-symmetry group in three dimensions. Obviously, iγ 5,

the U(1) R-symmetry generator of the four-dimensional theory is contained. The second

set of SU(2) transformations mixes spinors of different chirality. On the supersymmetry

parameters with (anti)chiral components εi (εi), the ‘hidden’ SU(2) transformations act

according to [29],

δεi = −1
2 iα εi + 1

2β ε
ijγ3 εj , δεi = 1

2 iα εi + 1
2 β̄ εijγ

3 εj , (3.4)

where α is a real parameter associated with the chiral U(1) R-symmetry in four dimensions

and β is complex. It is straightforward to verify that the above transformations generate

a group SU(2) that commutes with the four-dimensional SU(2) R-symmetry group.

Now we present the three-dimensional supersymmetry transformations upon the re-

duction to three space-time dimensions, which readily follow from (2.1), (2.2) and (2.3),

and identify the R-symmetry transformations. The result for the tensor multiplet reads as
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follows2

δLij = 2 i ε̄(iγ
3ϕj) − 2 i εik εjl ε̄

(kγ3ϕl) ,

δEµ̂3 = iε̄i γ̂µ̂ γ
3 ϕj εij − iε̄i γ̂µ̂ γ

3 ϕj ε
ij ,

δϕi = i /̂∂Lij γ3 εj + iεij Eµ̂γ̂µ̂γ
3 εj + εijE3 γ3εj −Gεi ,

δE3 = − ε̄iγ3 /̂∂ϕj εij − ε̄iγ3 /̂∂ ϕj ε
ij ,

δG = − 2ε̄i /̂∂ϕ
i ,

(3.5)

where /̂∂ ≡ γ̂µ̂∂µ̂. The correct R-symmetry transformations can now be identified by adopt-

ing SU(2) transformations for the fermion fields ϕi, such that δLij and δEµ̂3 remain invari-

ant under the combined transformations of the fermions and the supersymmetry parame-

ters. This leads to

δϕi = 1
2 iαϕi − 1

2 β̄ ε
ijγ3 ϕj , δϕi = −1

2 iαϕi − 1
2β εijγ

3 ϕj . (3.6)

The above transformations indeed generate the SU(2) group. It is then straightforward

to establish that under this particular R-symmetry subgroup, the fields G, Ḡ and E3

transform according to the vector representation,

δG = iαG− β̄ E3 , δE3 = 1
2β G+ 1

2 β̄ Ḡ . (3.7)

Likewise, the dimensionally reduced supersymmetry transformations of the vector su-

permultiplet read,

δX = − i ε̄i γ3 Ωi ,

δW3 = i ε̄i Ωj ε
ij − i ε̄i Ωj εij ,

δWµ̂ = ε̄iγ̂µ̂ Ωj ε
ij + ε̄iγ̂µ̂ Ωj εij ,

δΩi = 2i /̂∂X γ3 εi + i/̂∂W3 εij ε
j − εij F µ̂γ̂µ̂εj + Yij ε

j ,

δYij = 2 ε̄(i /̂∂ Ωj) + 2 εik εjl ε̄
(k /̂∂ Ωl) .

(3.8)

where F µ̂ = 1
2 iεµ̂ν̂ρ̂∂ν̂Wρ̂. The R-symmetry transformations of Ωi follow from the invariance

of δWµ̂ and δYij under the combined transformations on the spinors. This time we find

δΩi = 1
2 iαΩi + 1

2 β̄ ε
ijγ3 Ωj , δΩi = −1

2 iαΩi + 1
2β εijγ

3 Ωj . (3.9)

which also correctly generates the SU(2) group associated with (3.4). It then follows that

the fields X, X̄ and W3 transform under the R-symmetry group according to the vector

representation,

δX = −iαX + 1
2βW3 , δW3 = −β X̄ − β̄ X . (3.10)

2Note that the Dirac conjugate of a spinor involves the matrix γ0. Therefore there is a relative factor

γ̃ between the three- and four-dimensional Dirac conjugates, and correspondingly between the two charge

conjugation matrices. As a result the three-dimensional charge conjugation matrix Ĉ satisfies the following

identities,

Ĉγ̂µ̂Ĉ−1 = −γ̂µ̂T , Ĉγ3Ĉ−1 = γ3T , Ĉγ̃Ĉ−1 = γ̃T , Ĉγ5Ĉ−1 = −γ5T , ĈT = −Ĉ .
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The above results enable the identification of the vector and tensor multiplet com-

ponents, up to an overall constant and an SU(2) transformation that identifies the U(1)

subgroup. To see this we write the spinor quantities for the tensor multiplet in a different

basis. Following [29] we first write the supersymmetry parameters in a basis where the

‘hidden’ SU(2) factor of the R-symmetry becomes manifest,

ε+ = 1
2

√
2 γ3 (ε1 − iε2) , ε− = 1

2

√
2
(
ε1 − iε2

)
,

ε+ = 1
2

√
2 γ3

(
ε1 + iε2

)
, ε− = 1

2

√
2 (ε1 + iε2) . (3.11)

To appreciate this choice of basis we note that the SU(2) transformations (3.4) read

δε+ = 1
2 i(α ε+ + β̄ ε−) . (3.12)

Note that ε± and ε± are related through charge conjugation. Likewise we write the tensor

multiplet spinors as,

ϕ+ = −1
2

√
2 γ3

(
ϕ1 + iϕ2

)
, ϕ− = −1

2

√
2 (ϕ1 + iϕ2) ,

ϕ+ = −1
2

√
2 γ3 (ϕ1 − iϕ2) , ϕ− = −1

2

√
2
(
ϕ1 − iϕ2

)
, (3.13)

where the relevance of this basis follows from

δϕ+ = 1
2 i(αϕ+ + β̄ ϕ−) . (3.14)

In this basis the supersymmetry transformations of the tensor multiplet can be compared

directly to those of the vector multiplet components, where we identify the spinor fields

(ϕ+, ϕ−) with the spinor fields (Ω1,Ω2) of the vector multiplet. This establishes the c-map

for the bosonic degrees of freedom,

L12 = i(X + X̄) , L11 = W3 +X − X̄ , L22 = W3 −X + X̄ ,

Eµ̂3 = Wµ̂ ,

G = Y22 , Ḡ = Y11 , E3 = iY12 .

(3.15)

3.2 On higher-derivative actions

The expressions for the composite chiral supermultiplet can also be used to construct

actions with higher-derivative couplings. For instance, we can start from the simple N = 2

supersymmetric Lagrangian for a single vector multiplet,

L ∝ |∂µX|2 + 1
8 Fµν

2 + 1
2 Ω̄i /∂ Ωi − 1

8 |Yij|2, (3.16)

and substitute the expressions for the composite components X, Fµν , Ωi and Yij in terms

of the tensor multiplet components. These are encoded in a function F(L) subject to the

constraint,

∂2F(L)

∂Lij ∂Lij
= 0 . (3.17)
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This constraint enables one to show that the action depends only on a single function

H(L) = [F(L)]2 which is no longer subject to constraints. To demonstrate this we present

the bosonic terms,

L =H
[
− 1

2 |∂2Lij|2 + 2∂[µEν] ∂
[µEν] + |∂µG|2

]

+Hij
[ (
∂[µLik∂ν]Ljlε

kl
)
∂µEν + 2

(
∂[µLijEν] (∂µEν)

)
− 1

2E
2∂2Lij − |G|2 ∂2Lij

− εik
(
Eµ∂µLjl

)(
∂2Lkl

)
− 1

2

(
∂µLik ∂

µLjl
)
∂2Lkl

]

− 1
2Hij,kl

[(
∂µLik ∂

µLjl
)
|G|2 + 1

2εikεjl
(
|G|2 +E2

)2 − 2εik
(
Eµ∂µLjl

)(
|G|2 +E2

)

− 2εik
(
∂µLlp∂

µLnp
)
Eν∂νLjn − εikεlmEµEν

(
∂νL

mn
)(
∂µLjn

)

− εikεjmE2
(
∂µLln∂

µLmn
)

+ 1
2 εik ∂µLjm ∂

µLpq ∂νLnq ∂
νLlp ε

mn
]
,

(3.18)

where

Hij =
∂H
∂Lij

, Hij,kl =
∂2H

∂Lij ∂Lkl
. (3.19)

Let us make a few comments at this point. First of all, consider the linear combination

of the free tensor multiplet Lagrangians (2.21) and (3.18),

L = − 1
2 |∂µLij|2 +EµE

µ − (ϕ̄i /∂ϕi + ϕ̄i /∂ϕ
i) + |G|2

+M−2
[
− 1

2 |∂2Lij|2 + 2∂[µEν] ∂
[µEν] + (∂2ϕ̄i /∂ϕi + ∂2ϕ̄i /∂ϕ

i) + |∂µG|2
]
, (3.20)

where M is a mass parameter. This action describes a free massless tensor multiplet and a

massive vector supermultiplet, as can be shown by analyzing the corresponding equations

of motion. The massive multiplet corresponds to negative metric states. All of this is in

accord with standard off-shell counting arguments.

Another comment concerns the R-symmetry. Lagrangians that are at most quadratic

in derivatives are always invariant under one of the factors of the R-symmetry group,

but not necessarily under both factors. For instance, the two-derivative action for vector

multiplets is always invariant under the SU(2) R-symmetry subgroup but not necessarily

under the U(1) factor. For the tensor multiplets the situation is precisely the reverse. In

this respect the Lagrangians that depend quartically on derivatives are different as they

can potentially break both factors of the R-symmetry group.

Although it is in principle possible to convert the tensor field to a scalar field by a

duality transformation, the fact that the Lagrangian (3.18) contains quartic terms in Eµ

and terms with derivatives of Eµ, makes it rather difficult to obtain explicit expressions.

Finally, in the following sections we will discuss the coupling of tensor supermultiplets

to supergravity. In that context it is rather straightforward to also couple Lagrangians

with higher derivatives to supergravity. As we do not intend to cover this topic in more

detail here, we only present the supergravity coupling to the Lagrangian (3.18), restricting

ourselves again to the purely bosonic terms. Such a coupling requires H(L) to be an SU(2)
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invariant function that is homogeneous of degree −2. The result can then be written as

follows,

L = L1 + L2 + L3 , (3.21)

where

e−1L1 =H(L)
{
− 1

2LijL
ij
(

1
3R+D

)2
+
(
E2 − LijD2Lij

) (
1
3R+D

)
+ |G|2

(
1
6R+ 2D

)

−DaEb
(
Rabij(V)Likε

jk − 1
2 [T abijεij G+ h.c.]

)

+ 1
8

(
Rab

i
j(V)Likε

jk − 1
2 [Tab

ijεij G+ h.c.]
)2 − 1

64 [Tab
ijεijG+ h.c.]2

+ |DµG|2 − 1
2

(
D2Lij

) (
D2Lij

)
+ 2D[aEb]D[aEb]

}
,

(3.22)

e−1L2 = − 1
2Hij(L)

{
Lkl
(
DµLikDµLjl

) (
1
3R+D

)

+
(
EbDaLij + 1

2DaLikDbLjlεkl
)(
Rabmn(V)Lmoε

no

− 1
2 [T abmnεmnG+ h.c.]

)

−DµLijDµ|G|2 − 2(DaLikDbLjlεkl −EaDbLij)(DaEb)

+D2Lij(|G|2 + 2E2) +D2Lkl(DµLikDµLjl + 2εikE
µDµLjl)

}
,

(3.23)

e−1L3 = 1
4Hij,kl(L)

{
εikεjl(DµLmnDµLmn|G|2 − (|G|2 +E2)2 + 1

4(DµLmnDµLmn)2)

− 2(DµLikDµLjl)E2 + 4εik[EµDµLjl(|G|2 +E2)

− (DµLjmDνLlnεmn)EµEν ]

− 1
2εikεjl(DµLmnDνLmn)2 − 2εikE

νDµLjl(DµLmnDµLmn)
}
.

(3.24)

Here R denotes the Ricci scalar associated with the gravitational field. The other super-

gravity fields will be introduced in the next section. Because this expression is based on

a chiral superspace density, one can also introduce elementary vector multiplets as well as

the Weyl multiplet couplings. The latter are accompanied by additional terms of higher

order in the Riemann tensor. Terms such as these may be important for determining the

subleading corrections to the black hole entropy [18].

4. Coupling to conformal supergravity

The tensor supermultiplet constitutes also a representation of the full N = 2 superconfor-

mal algebra [2]. In addition to the translations, Lorentz transformations, and R-symmetry

transformations, the fields are subject to dilatations. In principle, fields also transform un-

der conformal boosts, but matter multiplets are usually inert under those. On the fermionic

side, the conventional Q-supersymmetry is extended with a second, special, supersymme-

try, called S-supersymmetry.
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Superconformal transformations can be defined in flat space, with space-time in-

dependent transformation parameters and transformation rules that explicitly depend

on the space-time coordinates. In a superconformal background, where the translations

are replaced by space-time diffeomorphisms, the transformation rules contain the various

(gauge and other) fields of the superconformal theory. In their presence the Q- and S-

supersymmetry transformations of the tensor supermultiplet fields take the following form,

δLij = 2 ε̄(iϕj) + 2 εikεjl ε̄
(kϕl) ,

δϕi = /DLij εj + εij /̂EI εj −Gεi + 2Lij ηj ,

δG = − 2 ε̄i /D ϕi − ε̄i(6Lij χj + 1
4 γ

abTabjk ϕl ε
ijεkl) + 2 η̄iϕ

i ,

δEµν = iε̄iγµνϕ
j εij − iε̄iγµνϕj ε

ij + 2iLij ε
jk ε̄iγ[µψν]k − 2iLij εjk ε̄iγ[µψν]

k .

(4.1)

Here εi and ηi denote the Q- and S-supersymmetry parameters, respectively. The deriva-

tives Dµ are superconformally covariant and Êµ denotes the superconformally covariant

field strength of the tensor field Eµν . These quantities, which will be defined shortly, in-

volve the gauge fields of the superconformal algebra: the dilatational gauge field bµ, the

U(1) and SU(2) R-symmetry gauge fields Aµ and Vµij , the spin connection field ωµ
ab, the

gauge field fµ
a associated with special conformal boosts, and the Q- and S-supersymmetry

gauge fields ψµ
i and φµ

i. Not all of these gauge fields are independent and we refer to the

appendix for further details. Obviously, we also have the vierbein field eµ
a and its inverse

which are used to convert world to tangent space indices and vice versa. Apart from the

gauge fields, the superconformal theory contains a complex, anti-selfdual tensor field Tab
ij ,

a spinor field χi and a real scalar field D, of which only the first two appear in (4.1).

To exhibit some of the details we record the expressions for the superconformal deriva-

tives and the superconformal tensor field strength,

DµLij =DµLij − ψ̄µ(i ϕj) − εikεjl ψ̄(k
µ ϕl) ,

Dµϕ
i =Dµϕi − Lij φµj − 1

2

(
/DLij + εij /̂E

)
ψµj + 1

2Gψµ
i ,

DµG =DµG− φ̄µiϕi + ψ̄µ i /Dϕ
i + 3Lij ψ̄µ iχj + 1

8 ψ̄µi γ
cd Tcd kl ϕj ε

ik εlj ,

Êµ = 1
2 i e−1 εµνρσ

[
∂νEρσ − 1

2 iψ̄iνγρσϕ
jεij + 1

2 iψ̄νiγρσϕjε
ij − iLijε

jkψ̄ν
iγρψσk

]
.

(4.2)

Here the derivatives Dµ are covariant with respect to Lorentz transformations, dilatations

and R-symmetry transformations,

DµLij = (∂µ − 2bµ)Lij − Vµk(i Lj)k

Dµϕi = (∂µ − 1
4ωµ

ab γab − 1
2 iAµ − 5

2bµ)ϕi + 1
2Vµij ϕj ,

DµG = (∂µ − iAµ − 3 bµ)G . (4.3)

The coupling between a tensor and a reduced chiral supermultiplet is still possible in

a superconformal background [3]. The reduced chiral multiplet constitutes also a super-

conformal multiplet and transforms under Q- and S-supersymmetry according to

δX = ε̄iΩi ,

δΩi = 2 /DX εi + 1
2εijγ

µν F̂µν ε
j + Yij ε

j + 2X ηi ,

δYij = 2 ε̄(i /DΩj) + 2 εikεjl ε̄
(k /DΩl) .

(4.4)
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Here we have introduced a superconformal field strength F̂µν , defined by

F̂µν = Fµν − ψ̄[µiγν]Ωj ε
ij − ψ̄[µ

iγν]Ω
j εij

−X ψ̄µiψνj ε
ij − X̄ ψ̄µ

iψν
j εij − 1

4X̄ Tµν
ijεij − 1

4X Tµνijε
ij , (4.5)

where Fµν = 2 ∂[µWν]. The supersymmetry variation of Wµ remains as given in (2.3). The

superconformal field strength should be identified with a component of the superconformal

reduced chiral multiplet, as can be seen from its variation under Q- and S-supersymmetry,

δF̂−ab = 1
2 ε̄i /DγabΩj ε

ij − 1
2 ε̄
iγab /DΩj εij − η̄iγabΩj ε

ij . (4.6)

The superconformally invariant coupling between the two multiplets is an extension

of (2.4),

e−1L = X G+ X̄ Ḡ− 1
2Y

ij Lij

−1
2(ψ̄µ

iγµΩj + X̄ ψ̄µ
iγµνψν

j)Lij − 1
2(ψ̄µiγ

µΩj +X ψ̄µiγ
µνψνj)L

ij

+ϕ̄i(Ωi +X γµψµi) + ϕ̄i(Ω
i + X̄ γµψµ

i)

−1
4 i e−1εµνρσ Eµν Fρσ . (4.7)

Just as in the previous section, we can construct reduced chiral multiplets from tensor

multiplets. Again we start with the complex scalar XI defined in (2.5), which transforms

into a chiral spinor Ωi I ,

XI = FI,J ḠJ +FI,JKij ϕ̄iJϕjK ,
Ωi I = −2FI,J /DϕiJ −FI,J(6Lij

Jχj + 1
4Tab

jk γabϕlJ εijεkl) + 2FI,JKij ḠJ ϕjK

−2FI,JKkl ( /DLikJ − εik /̂EJ)ϕl
K + 2FI,JKLijkl ϕjL (ϕ̄k

Jϕl
K) . (4.8)

Here the function FI,J(L) should again satisfy the constraints (2.10). But in order that (4.8)

defines the beginning of a superconformal reduced chiral multiplet, the component XI

should, in addition, be invariant under S-supersymmetry. This is precisely ensured by the

condition (2.32), which implies that the function FI,J is SU(2) invariant and homogeneous

of degree −1, so that it has scaling weight −2. As it turns out, there are no further

restrictions and we simply record the corresponding expressions for Yij I and Fµν I below,

Yij I = −2FI,J
[
2cLij

J + 3DLij
J
]
− 2FI,JKij (ḠJ GK + Êµ

J ÊµK) ,

− 2FI,JKkl (DµLik
J DµLjl

K + 2 εk(iDµLj)l
J ÊµK)

− 2FI,JKLijkl ϕ̄kKϕlJ GL − 2FI,JKLijkl ϕ̄kKϕlJ ḠL

+ 4 (FI,JKm(i ϕ̄
mJ /Dϕj)

K + FI,JKm(kϕ̄m
J /Dϕl)K εik εjl)

+ 4FI,JKLn(i
klDµLj)k

J
(
ϕ̄nLγµϕl

K
)

− 4FI,JKLn(i
kl εj)k

(
ϕ̄nL /̂EJ ϕl

K
)

− 2FI,JKLMijmn
kl ϕ̄k

Jϕl
K ϕ̄mLϕnM

+ 12FI,JKk(i Lj)l
J(ϕ̄kKχl + εkmεlnϕ̄m

Kχn)
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+ 1
2FI,JKk(i(εj)m ϕ̄

kJγabTab
mnϕlK εnl + εmk ϕ̄m

JγabTab j)nϕl
K εnl) , (4.9)

Fµν I = −2FI,JKmn ∂[µLmk
J ∂ν]Lnl

K εkl

− 4 ∂[µ

(
FI,J Êν]

J + FI,JKki ϕ̄kJγν]ϕj
K εij

)

+ 2 ∂[µ

(
FI,J Vν]

i
j Lik

J εjk + FI,J ψ̄ν]
i ϕjJ εij + FI,J ψ̄ν]i ϕj

J εij
)
, (4.10)

where 2cLij = DaDaLij. An explicit evaluation leads to the following expression,

DaD
a Lij

I = DaDaLij
I + 2 fµ

µ Lij
I

−
(
ψ̄µ(iDµ ϕj)

I + εik εjl ψ̄
µ(kDµϕ

l)I
)

− 1
16

(
ϕ̄(j

I T cdi)k γcd γ
µ ψkµ + εik εjl ϕ̄

(lI T k)mcd γcd γ
µ ψµm

)

− 3
2

(
ψ̄µ(i Lj)k

I γµ χk − ψ̄µk γµ Lk(i
I χj) + ψ̄µ

k γµ χk Lij
I
)

+ 1
2

(
φ̄µ(i γ

µ ϕj)
I + εik εjl φ̄µ

(k γµ ϕl)I
)
.

(4.11)

Obviously the equations (4.8), (4.9) and (4.10) are extensions of the expressions (2.5),

(2.11) and (2.12). For a single tensor supermultiplet the results can be compared to [3].

We also note that it is possible to recast the superconformal extension F̂abI of (4.10) in a

form where its supercovariance is more manifest,

F̂ab I = − 4D[a

(
FI,J ÊJb]

)
− 2FI,JKij D[a L

ikJ Db]L
jlK εkl + FI,J Rabij(V)LJik ε

jk

−FI,J ϕ̄iJ Rabj(Q) εij − 1
4 Tab

ij εij

(
FI,J GJ + FI,JKkl ϕ̄kJ ϕlK

)

−FI,J ϕ̄iJ Rabj(Q) εij − 1
4 Tabij ε

ij
(
FI,J ḠJ + FI,JKkl ϕ̄kJ ϕlK

)

−D[a

(
4FI,JKij ϕ̄iK γb] ϕkJ εjk

)
.

(4.12)

However, to derive the Lagrangian it is much more convenient to work with the expression

(4.10).

We now proceed and substitute the above expressions into the supercovariant density

formula (4.7). In principle this is straightforward. In doing this we make use of the

condition (2.32) and in order to express the Lagrangian in terms of a single function, we

also use (2.33). Dropping a total derivative term, we then establish that the Lagrangian

depends only on the function FIJ that we encountered earlier in (2.23). The complete

result can then be presented as follows,

Ltotal = eL1 + eL2 + eL3 + eL4 , (4.13)
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where

L1 =FIJ Lij
I LijJ

{
1
3

[
R+ (e−1εµνρσψ̄µ

iγνDρψσi − 1
4 ψ̄µ

iψν
j T µνij + h.c.)

]

+D + 1
2(ψ̄µ

iγµχi + h.c.)
}
,

L2 =FIJ

{
− 1

2 DµLijI DµLijJ +Eµ
I EµJ − ϕ̄iI /DϕiJ − ϕ̄iI /DϕiJ +GIḠJ

−
[
(1

8 ϕ̄
iIγµνϕ

lJ εijεkl − 1
3Lij

I ϕ̄iJγµψνk)T
µνjk + h.c.

]

−
[
Lij

I(4
3 ϕ̄

iJγµνDµψνj + 2ϕ̄iJχj) + h.c.
]

+ 1
2

[
ψ̄µi [( /D + /D)LijI − εij( /̂EI + /EI)] γµϕj

J + h.c.
]

+ e−1εµνρσψ̄ν
iγρ ψσk Lij

IDµLjkJ −EµI Vµij LikJ εjk ,
+ e−1εµνρσψ̄ν

iγρ ψσk Lij
I εjk

[
Eµ

J − 1
4 ψ̄λ

mγµγ
λϕnJεmn − 1

4 ψ̄λmγµγ
λϕn

Jεmn
]

+ 1
4

(
e−1εµνρσψ̄ν

iγρ ψσk Lij
I εjk

)(
e−1εµ

λτζ ψ̄λ
mγτ ψζ Lmn

J εnp
)}

,

L3 = 1
2 ie−1εµνρσ FIJK

ij Eµν
I ∂ρLik

J ∂σLjl
K εkl

+
{
FIJKij

(
ḠI ϕ̄iJ ϕjK + ϕ̄iI ( /DLjkJ + εjk /̂EJ)ϕk

K

− ϕ̄iIϕjJ ψ̄µkγµϕkK − ψ̄µiϕjI ϕ̄kJγµϕkK
)

+ h.c.
}
,

L4 =FIJKLij
kl ϕ̄iIϕjJ ϕ̄k

Kϕl
L .

(4.14)

Setting the fields of the Weyl multiplet to zero, one recovers the tensor multiplet Lagrangian

(2.21). For a single tensor supermultiplet the above expression may be compared to the

result derived in [3].

5. Poincaré supergravity with tensor multiplets

Superconformal matter multiplets coupled to conformal supergravity are gauge equiva-

lent to matter-coupled Poincaré supergravity provided that enough potential compensat-

ing multiplets are present. One compensating vector multiplet is needed to provide the

graviphoton of N = 2 Poincaré supergravity. For the minimal off-shell versions one may

choose a so-called non-linear multiplet, a hypermultiplet or a tensor multiplet. In the

Poincaré context, the conformal symmetries (i.e., scale transformations, special conformal

boosts and S-supersymmetry) are no longer present. The R-symmetries are usually absent

as well. An exception is the case where a single tensor multiplet acts as a compensator,

because the triplet field Lij has a U(1) stability subgroup which reflects itself as a local in-

variance group of the corresponding Poincaré supergravity Lagrangian [3]. The presence of

other multiplets can nevertheless affect this local invariance, as we shall see in due course.

In the first subsection we focus on some characteristic features of the Poincaré su-

pergravity Lagrangians with tensor multiplets. As already explained in section 1, it is

important to stress our treatment is based on off-shell multiplets, as it is always possible to

dualize tensor multiplets into hypermultiplets and, in the presence of suitable isometries,
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vice versa. This conversion affects, however, the off-shell structure of the theory. In a sec-

ond subsection 5.2 we explain the structure of the tensor multiplet target space. In a third

subsection 5.3 we work out the example of two tensor multiplets which, upon dualization,

leads to the classification of 4-dimensional quaternion-Kähler manifolds with two abelian

isometries. These manifolds include the so-called universal hypermultiplet which emerges

in Calabi-Yau compactifications of string theory.

5.1 The general case

In this subsection we discuss the coupling of tensor, vector and hypermultiplets to super-

gravity. We first present the Lagrangians in their superconformally invariant form and

exhibit a number of characteristic features that are relevant in the context of the super-

Poincaré formulation. The coupling to tensor multiplets is based on this paper. For the

hypermultiplets we follow the treatment of [7] and for the vector multiplets we base our-

selves on [30, 31] and related references. In all three cases n will denote the number of

independent multiplets. Of course, these numbers do not have to be equal, but we refrain

from introducing extra notation to make a distinction. As it turns out the couplings for

each of the three types of multiplets can be defined in terms of certain homogeneous po-

tentials, which we denote by χtensor(L), χhyper(φ) and χvector(X, X̄), respectively. Under

the scale transformations of the superconformal group, these potentials scale with weight

2 and they are invariant under the R-symmetry group. As a result of the scale invariance,

the target spaces parametrized by the scalar fields of each of the three supermultiplets are

cones. For hypermultiplets the target space is a hyperkähler cone, which is a cone over a

(4n − 1)-dimensional 3-Sasakian space. The latter is an Sp(1) fibration over a (4n − 4)-

dimensional quaternion-Kähler space. The target space of the vector multiplets is a cone

over the product of an (2n−1)-dimensional special Kähler space times S 1. The target space

of the tensor multiplet is the cone over a (3n − 1)-dimensional space whose geometrical

properties have not been extensively studied so far.

In the case of tensor and vector multiplets, supersymmetry relates the gauge fields

(i.e., the tensor and vector fields) to a special basis for the scalar fields given by Lij
I

and XΛ, respectively. The potentials can therefore be generally defined in terms of these

fields. Eventually Lij
I and XΛ may be parametrized in terms of other fields, in which case

they will play the role of sections. The case of hypermultiplets is different in this respect,

because these multiplets do not contain any gauge fields and have thus no preferred basis

for the scalars. Moreover hypermultiplets do not constitute off-shell supermultiplets, unlike

the tensor and vector supermultiplets. For superconformal hypermultiplets there exists the

so-called hyperkähler potential χhyper(φ) [7], where the fields φA denote the 4n scalar fields

corresponding to n hypermultiplets, but there is no a priori definition of the hyperkähler

potential. The fact that we are dealing with hyperkähler cones implies that the derivative

of χhyper(φ) is directly related to a homothetic vector denoted by kA,

∂χhyper(φ)

∂φA
= gAB(φ) kB(φ) . (5.1)
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Here k = kA ∂/∂φA generates the scale transformations on the target space of the hyper-

multiplet scalars and gAB(φ) denotes the metric on the hyperkähler cone. We are dealing

with an exact homothety, implying that

DAk
B = δA

B ⇔ DADBχhyper = gAB , χhyper(φ) = 1
2gAB k

AkB . (5.2)

The covariant derivative contains the Levi-Civitá connection associated with the metric

gAB . The formulation of the action and transformation rules for hypermultiplets is not

determined exclusively in terms of the hyperkähler potential, and we note the existence of

local sections Ai
α(φ) of an Sp(n) × Sp(1) bundle [32] which appear naturally in the full

Lagrangian and transformation rules (here n denotes the number of hypermultiplets and

α = 1, . . . , 2n). Here Sp(1) coincides with the SU(2) factor of the R-symmetry group and

the Sp(n) group acts on the negative-chirality spinors ζα through the indices α. Indices

referring to the conjugate Sp(n) representation will be denoted by ᾱ and they label the

positive-chirality spinors ζ ᾱ. Under S-supersymmetry the fermions transform into the

sections Ai
α mentioned above.

For the three types of supermultiplets, the potentials are defined by

χtensor(L) = 2FIJ Lij
I LijJ ,

χhyper(L) = 1
2ε
ijΩ̄αβ Ai

αAj
β ,

χvector(X, X̄) = i
(
XΛF̄Λ − X̄ΛFΛ

)
= NΛΣX

ΛX̄Σ . (5.3)

Here FΛ is the derivative of a holomorphic homogeneous function F (X) of second degree

of the fields XΛ and NΛΣ is defined by

NΛΣ =
∂2χvector(X, X̄)

∂XΛ∂X̄Σ
= 2 Im[FΛΣ] , (5.4)

where FΛΣ denotes the second derivative of F (X). Furthermore the symplectic tensor Ω̄αβ,

which exists for any hyperkähler space, can be defined as follows,

Ω̄αβ = 1
2εij gAB γ

Ai
α γ

Bj
β , (5.5)

where γAiα denotes a generalized vielbein that converts hyperkähler target-space indices

into Sp(n) × Sp(1) indices. This quantity appears in the supersymmetry transformations

of the hypermultiplet scalars,

δφA = 2 (γAiᾱ ε̄
iζ ᾱ + γAiα ε̄iζ

α) . (5.6)

The presentation above shows that the combined target space is a product of three

cones, each with its own potential. The potentials satisfy properties that are very similar

to (5.1) and (5.2), except that there is no need to use covariant derivatives as in (5.2). For

tensor multiplets the corresponding equations are given by (2.37), (2.38) and (2.39). The

homogeneity of the potentials follows from

Lki
I ∂χtensor(L)

∂LkjI
= 1

2δ
j
i χtensor(L) ,
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kA(φ)
∂χhyper(φ)

∂φA
= 2χhyper(φ) ,

XΛ ∂χvector(X, X̄)

∂XΛ
= X̄Λ ∂χvector(X, X̄)

∂X̄Λ
= χvector(X, X̄) . (5.7)

For the tensor and vector multiplet potentials the above equations also imply the invariance

under R-symmetry. For the hyperkähler potential the equations for R-symmetry involve

the relevant Killing vectors, or the complex structures of the hyperkähler cone.

Let us now exhibit some characteristic terms of the three Lagrangians, and compare

them (eventually we also consider the sum of the three Lagrangians),

e−1Ltensor = 1
6 χtensor

[
R+ (e−1εµνρσψ̄µ

iγνDρψσi − 1
4 ψ̄µ

iψν
j T µνij + h.c.)

]

+ 1
2 χtensor

[
D + 1

2(ψ̄µ
iγµχi + h.c.)

]
,

− 1
2FIJ DµLijI DµLijJ

−
( ∂χtensor

∂LijI

[
2
3 ϕ̄

iIγµνDµψνj + ϕ̄iIχj − 1
6 ϕ̄

iIγµψνk T
µνjk

]
+ h.c.

)
,

e−1Lhyper = 1
6 χhyper

[
R+ (e−1εµνρσψ̄µ

iγνDρψσi − 1
4 ψ̄µ

iψν
j T µνij + h.c.)

]

+ 1
2 χhyper

[
D + 1

2(ψ̄µ
iγµχi + h.c.)

]
,

− 1
2gAB DµφADµφB

− ∂χhyper

∂φA

(
γAiᾱ

[
2
3 ζ̄
ᾱγµνDµψν i + ζ̄ ᾱχi − 1

6 ζ̄
ᾱγµψνj T

µνij
]

+ h.c.
)
,

e−1Lvector = 1
6χvector

[
R+ (e−1εµνρσψ̄µ

iγνDρψσi + 1
2 ψ̄µ

iψν
j T µνij + h.c.)

]

− χvector

[
D + 1

2(ψ̄µ
iγµχi + h.c.)

]
,

−NΛΣDµXΛDµX̄Σ

−
(∂χvector

∂XΛ

[
1
3 Ω̄i

ΛγµνDµψν i − Ω̄i
Λχi + 1

6 Ω̄i
Λγµψνj T

µνij
]

+ h.c.
)
. (5.8)

The equations (5.8) exhibit a rather uniform structure for the various couplings. Es-

pecially the couplings of tensor multiplets and hypermultiplets are closely related, which

is not surprising in view of the fact that the tensor multiplets can be dualized to hyper-

multiplets. The fact that the potentials for the tensor multiplet cones and the hyperkähler

cones are identical, a result derived at the end of subsection 2.3, makes the agreement even

more close.

With the vector multiplet there are subtle differences reflected in the relative coeffi-

cients. It is well known that these differences are crucial for converting to the Poincaré

formulation. The above Lagrangians still contain gauge degrees of freedom associated with

certain superconformal symmetries. The symmetry under conformal boosts is manifest.

Because only the dilatational gauge field bµ transforms under this symmetry, it follows
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that the Lagrangians are independent of bµ, as can be verified by explicit computation.

The dilatational symmetry is still intact and we can impose a corresponding gauge con-

dition. The obvious condition is to set the coefficient of the Ricci scalar in the combined

Lagrangian to a constant, i.e.,

1
6χtensor + 1

6χhyper + 1
6χvector = − 1

2κ2
, (5.9)

so that we end up with a conventional Einstein-Hilbert term. Observe that, in order to

describe scalar fields with kinetic terms of the correct sign, it follows that the cone metrics

can not be positive definite. Under Q-supersymmetry the condition (5.9) is not invariant,

and it is convenient to exploit S-supersymmetry to set its variation to zero by a second

gauge choice. This motivates the condition,

2
∂χtensor

∂LijI
ϕjI + 2

∂χhyper

∂φA
γAiᾱ ζ

ᾱ +
∂χvector

∂XΛ
Ωi

Λ = 0 . (5.10)

Concentrating on the second and fourth lines of the three Lagrangians (5.8) we see that the

fields D and χi act as Lagrange multipliers, which leads, when combined with the above

gauge choices, to the following results,

χtensor + χhyper = −2κ−2 ,

χvector = −κ−2 ,

∂χtensor

∂LijI
ϕjI +

∂χhyper

∂φA
γAiᾱ ζ

ᾱ = 0 ,

∂χvector

∂XΛ
Ωi

Λ = 0 . (5.11)

Because we used the field equations corresponding to one bosonic and eight fermionic fields,

supersymmetry is no longer realized off shell. As a result of the above procedure the sum

of the Lagrangians (5.8) reduces to

e−1Lcombined = − 1

2κ2
R− 1

2κ2

[
e−1εµνρσψ̄µ

iγνDρψσi − 1
4 ψ̄µ

iψν
j T µνij + h.c.

]

− 1
2FIJ DµLijI DµLijJ − 1

2gAB DµφADµφB −NΛΣDµXΛDµX̄Σ . (5.12)

In this formulation the scalar fields are constrained by the first two equations of (5.11) and

corresponding restrictions exist on the fermions. The full action is now invariant under

general coordinate transformations, local Lorentz transformations, local supersymmetry

(defined as a field-dependent linear combination of Q- and S-supersymmetry) and local

R-symmetry. Clearly the hypermultiplet and tensor multiplet fields are entangled whereas

the vector multiplet fields remain separate, a feature that has been known for some time.

5.2 The tensor multiplet target space

We now specialize to the tensor scalars Lij
I and analyze their corresponding target space.

It is convenient to change notation at this point and rescale the fields Lij
I by the inverse
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of χtensor so that the Lij
I are scale invariant (we refrain from imposing a gauge condition).

The rescaled fields are then constrained to a hypersurface,

2FIJ (L)Lij
ILijJ = 1 . (5.13)

Furthermore we use a vector notation for the fields Lij
I , according to

Lij
I = −i ~LI · (~σ)ki εjk , (5.14)

where ~σ = (σ1, σ2, σ3) are the Pauli matrices (with σ1σ2σ3 = i) so that Lij
ILijJ = 2 ~LI ·~LJ .

With these definitions we find,

1
2FIJ(L)DµLijIDµLijI =

(∂µχtensor)
2

4χtensor
+ χtensor FIJ(L)Dµ~LI · Dµ~LJ , (5.15)

which shows that we are indeed dealing with a cone over a (3n − 1)-dimensional space

parametrized by the constrained coordinates ~LI .

Let us now write the bosonic terms of the Lagrangian (4.14) in terms of the rescaled

variables,

e−1Ltensor = χtensor

[
1
6R+ 1

2D − 1
4(∂µ lnχtensor)

2
]

− χtensorFIJ(L) (∂µ~L
I − ~Vµ × ~LI) · (∂µ~LJ − ~Vµ × ~LJ)

+ χ−1
tensorFIJ(L)

[
Eµ

I EµJ +GIḠJ
]

+ 2FIJ (L)EµI ~LJ ~Vµ − 1
2 ie−1εµνρσ ~FIJK(L) · (∂ρ~LI × ∂σ~LJ)Eµν

K , (5.16)

where ~FIJK = ∂FIJ/∂~L
K and

Vµij = i~Vµ (~σ)ij . (5.17)

To eliminate the auxiliary SU(2) gauge fields ~Vµ, the matrix that multiplies the terms

quadratic in these fields is relevant,

[M]rs = FIJ ~L
I · ~LJ δrs − LIr FIJ LJs , (5.18)

where r, s = 1, 2, 3 denote vector indices. It is clear that this matrix has zero eigenvalues

whenever all vectors ~LI are aligned, which is related to the fact that these configurations

leave a subgroup of SU(2) invariant. This is especially relevant for the case of a single

tensor multiplet, which always leaves a subgroup invariant, so that the approach sketched

below is not applicable. For several tensor multiplets generic configurations correspond to

matrices M with non-vanishing determinant. In that case the equations of motion for ~Vµ
lead to

~Vµ = M−1 (~LI × ∂µ~LJ + χ−1
tensor Eµ

I ~LJ)FIJ , (5.19)
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where the inverse M−1 equals3

[
M−1

]
rs

=
1

det(M)

[
1
2FIJFKL(~LI × ~LK) · (~LJ × ~LL) δrs + Lr

I FIK(~LK · ~LL)FLJ Ls
J
]
.

(5.20)

The determinant of M is given by

det(M) = 1
3(FIJ ~L

I · ~LJ)3 − 1
3FIJ(~LJ · ~LK)FKL(~LL · ~LM )FMN (~LN · ~LI) . (5.21)

The Lagrangian (5.16) is invariant under tensor gauge transformations, up to a surface

term. The latter originates exclusively from the last term in (5.16). To establish this one

needs to use the condition
∂

∂~LI
· ∂

∂~LJ
FKL = 0 , (5.22)

which follows from (2.38), and which was extensively discussed in section 2. Under lo-

cal SU(2) transformations the Lagrangian is also invariant up to a surface term. These

transformations can be written as

δ~LI = ~Λ× ~LI , δ~V = ∂µ~Λ + ~Λ× ~V , (5.23)

where ~Λ(x) represents the infinitesimal space-time dependent parameters of SU(2), and

the variation of the Lagrangian (resulting from the last two terms in (5.16)) reads,

δΛLtensor = ∂µ

(
− iεµνρσ FIJ ~L

I · ∂ν~ΛEρσJ
)
. (5.24)

Substituting (5.19) in the Lagrangian (5.16) then leads to the following Lagrangian

e−1Ltensor = χtensor

[
1
6R+ 1

2D − 1
4(∂µ lnχtensor)

2
]

− χtensor

[
G(1)
IJ ∂µ

~LI ∂µ~LJ + G(2)
IJ,KL (~LI · ∂µ~LJ) (~LK · ∂µ~LL)

]

+ χ−1
tensor

[
H(1)
IJ Eµ

I EµJ + FIJ G
IḠJ

]

+EµI H(2)
IJ
~LJ · (~LK × ∂µ~LL)FKL

− 1
2 ie−1εµνρσ ~FIJK · (∂ρ~LI × ∂σ~LJ)Eµν

K , (5.25)

where

H(1)
IJ = FIJ + FIK Lr

K (M−1)rs Ls
L FLJ ,

H(2)
IJ =

1

det(M)

[
[(FKL~L

K · ~LL)2 − FKL~LL · ~LMFMN
~LN · ~LK ]FIJ

+ 2FIK~L
K · ~LLFLM ~LM · ~LNFNJ

]
,

3Direct verification of this result makes use of the identity for general 3× 3 matrices O,

O3 − tr(O)O2 + 1
2
[(tr(O))2 − tr(O2)]O = det(O) 1 .
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G(1)
IJ = FIJ −

(FKL~L
K · ~LL)2 + FKL~L

L · ~LMFMN
~LN · ~LK

2 det(M)
FIP ~L

P · ~LQFQJ

+
1

det(M)
FIK~L

K · ~LLFLM ~LM · ~LNFNP ~LP · ~LQFQJ ,

G(2)
IJ,KL =

1

det(M)
FIM ~L

M · ~LNFNK FJP ~LP · ~LQFQL

+
(FKL~L

K · ~LL)2 + FKL~L
L · ~LMFMN

~LN · ~LK
2 det(M)

FIL FJK

− 1

det(M)

[
FIM ~L

M · ~LNFNP ~LP · ~LQFQL FJK + (I ↔ K; J ↔ L)
]
.(5.26)

The elimination of the SU(2) gauge fields does not affect the invariance under local SU(2).

This means that the target space involves only 3(n−1) scalar fields, subject to the constraint

(5.13), which in the present notation reads,

FIJ ~L
I · ~LJ = 1

4 . (5.27)

In principle one can now construct the most general variety of these spaces, start-

ing from the (homogeneous) potential χtensor written in terms of SU(2) invariant variables.

Subsequently one imposes the conditions (2.37) and (2.38), which yield a number of second-

order differential equations. Every solution of these equations yields a corresponding La-

grangian. Finally one imposes the constraint (5.27). At this point one has the option

to convert the tensor fields Eµν
I to scalars and obtain a quaternion-Kähler manifold of

dimensions 4(n− 1) with n abelian isometries. We already mentioned that the case n = 1

is special, and also the cases n = 2 and 3 are rather specific. The n > 3 cases can be

dealt with in a more generic way. In the next subsection we demonstrate this procedure

for the case of n = 2 tensor multiplets. In this way we will rather conveniently obtain the

classification of 4-dimensional quaternion-Kähler spaces with two commuting isometries

presented in [9]. We intend to return to an analysis of the higher-n cases in the future.

5.3 The case of two tensor supermultiplets

To illustrate the procedure sketched in the previous subsection we start by considering the

most general potential χtensor for two tensor multiplets, ~L1 and ~L2. This potential must be

invariant under SU(2) rotations and homogeneous of first degree under a uniform rescaling

of the Lij
I . In order to incorporate these constraints it is convenient to introduce the SU(2)

invariant variables,

s = ~L1 · ~L1 , u =
(~L1 · ~L1) (~L2 · ~L2)− (~L1 · ~L2)2

s2
, v =

~L1 · ~L2

s
. (5.28)

Note that s, u ≥ 0 and that u vanishes whenever the two vectors ~L1 and ~L2 are aligned.

For u = 0 we thus expect singularities as this value corresponds to field configurations that

are invariant under a subgroup of SU(2). When expressed in terms of the above variables,

the most general potential must be of the form

χtensor =
√

2s f(u, v) . (5.29)
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Substituting this ansatz into (2.37) determines the entries of the matrix FIJ to be

FIJ =
1√
2s

(
1
2f − vfv − ufu + v2fu

1
2fv − vfu

1
2fv − vfu fu

)
. (5.30)

We also need the 2× 2 matrix

~LI · ~LJ = s

(
1 v

v u+ v2

)
. (5.31)

Imposing the constraint (2.38) leads to the following partial differential equation for f(u, v),

fvv + 4u fuu = 0 . (5.32)

Thus the most general Lagrangian for two tensor multiplets coupled to supergravity is based

on the potential (5.29) with the function f(u, v) subject to (5.32). In passing, we note the

perturbatively corrected hypermultiplet [33, 34] corresponds to the following expression for

the underlying tensor multiplet potential,

χtensor = −2
√
s(u+ 2c) , (5.33)

which indeed satisfies the differential equation (5.32). Here the constant c is determined

by the one-loop string correction to the universal hypermultiplet.

For a small number of tensor multiplets the various terms in the bosonic Lagrangian

are most conveniently obtained from (5.16). Since we already established the invariance

under local SU(2) we can consider a special gauge. In principle the SO(3) vector space

can be decomposed into the two-dimensional space spanned by the vectors ~LI and a one-

dimensional subspace orthogonal to it. By adopting a gauge condition one can ensure

that the derivatives ∂µ~L
I take their values in the subspace spanned by the ~LI . With this

condition one derives that ~LI · (~LJ × ~LK) = 0, and this suffices to show that the last term

of (5.16) vanishes. Likewise, upon substituting the expression (5.19) for the SU(2) gauge

field, all terms linear in Eµ I vanish as well for the same reason. Note that the above

considerations pertain specifically to the case n = 2.

Now let us be more explicit about the gauge choice. By an appropriate rotation we

can bring the ~LI in the form

~L1 = (
√
s, 0, 0) , ~L2 = (v

√
s,
√
su, 0) , (5.34)

so that their inner products satisfy (5.31). Because the SU(2) is local we can ensure

that this decomposition holds for all space-time points, so that the ∂µ~L
I can be obtained

consistently from (5.34). It is now easy to evaluate the matrix M defined in (5.18), which

has a block-diagonal decomposition,

M =

√
s

8



Q2×2 0

0 f


 , (5.35)
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with the 2× 2 matrix Q defined by

Q =




2ufu −√ufv

−√ufv f − 2ufu


 . (5.36)

The fields ~Vµ can now be evaluated explicitly and substituted into the Lagrangian. This

leads to the following kinetic terms for the scalar fields s, u and v,

Lscalars = −e χtensor√
2s

[ f
8s

(∂µs)
2 +

1

2
∂µs ∂

µf +
s fu
4u

(
(∂µu)2 + 4u(∂µv)2

)

− s

8uf
(fv ∂µu− ufu ∂µv)2

]
.

(5.37)

Taking into account the fact that the three fields s, u, v are constrained by (5.27), which

implies

s =
1

2 f2
, (5.38)

one directly establishes

e−1Ln=2 =χtensor

[
1
6R+ 1

2D − 1
4(∂µ lnχtensor)

2
]

− χtensor det(Q)

(4uf)2

[
(∂µu)2 + 4u (∂µv)2

]

+ χ−1
tensor

[
H(1)
IJ Eµ

I EµJ + FIJ G
IḠJ

]
,

(5.39)

where

H(1)
IJ =

f det(Q)

u
√

8 s
[N Q−2NT]IJ . (5.40)

Here s is determined by (5.38) and the matrix N is defined by

N =

(√
u −v

0 1

)
. (5.41)

It is straightforward to perform a duality transformation by introducing Lagrange

multipliers φI to impose the Bianchi identity on the field strengths EµI and by subsequently

integrating out the field strengths. The resulting line element is then equal to (we suppress

the overall factor χtensor),

ds2 =
det(Q)

(4uf)2
[du2 + 4udv2] + [H(1)]IJ dφI dφJ , (5.42)

where [H(1)]IJ is the inverse of (5.40). Upon a change of coordinates this line element

coincides precisely with the expression derived by Calderbank and Pedersen for the general

class of selfdual Einstein metrics with two commuting Killing fields [9]. In this work the

matrices Q and N are related but not quite identical to the matrices used above. Hence,

the formalism discussed in this paper enables a straightforward and elegant derivation of

this classification.
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A. Superconformal calculus

Throughout this paper we use Pauli-Källén conventions and follow the notation used e.g.

in [35]. Space-time indices are denoted by µ, ν, . . . and Lorentz indices by a, b, . . .. Fur-

thermore SU(2)-indices are denoted by i, j, . . . and the corresponding SO(3)-indices by

r, s, . . .. All (anti-)symmetrizations are with unit strength. Majorana spinors are defined

by ϕ̄ = ϕT C, where the four-dimensional charge conjugation matrix C satisfies

−γT
µ = C γµ C

−1 , γT
5 = C γ5 C

−1 , CT = −C . (A.1)

The superconformal algebra consists of general coordinate, local Lorentz, dilatation,

special conformal, chiral U(1) and SU(2), and Q- and S-supersymmetry transformations.

Under Q-supersymmetry, S-supersymmetry and conformal transformations the indepen-

dent fields of the Weyl multiplet transform as follows:

δeµ
a = ε̄i γaψiµ + ε̄i γ

aψiµ ,

δψµ
i = 2Dµεi − 1

8Tab
ijγabγµεj − γµηi ,

δbµ = 1
2 ε̄
iφµi − 3

4 ε̄
iγµχi − 1

2 η̄
iψµi + h.c. + ΛaKeµa ,

δAµ = 1
2 iε̄

iφµi + 3
4 iε̄

iγµ χi + 1
2 iη̄

iψµi + h.c. ,

δVµij = 2 ε̄jφµ
i − 3ε̄jγµ χ

i + 2η̄j ψµ
i − (h.c. ; traceless) ,

δTab
ij = 8 ε̄[iRab

j](Q) ,

δχi = − 1
12γ

ab /DTab
ij εj + 1

6R(V)µν
i
jγ
µνεj − 1

3 iRµν(A)γµνεi +Dεi + 1
12γabT

abijηj ,

δD = ε̄i /Dχi + ε̄i /Dχ
i .

(A.2)

Here ΛaK is the transformation parameter for conformal transformations. The full super-

conformally covariant derivative is denoted by Dµ while Dµ denotes a covariant derivative

with respect to Lorentz, dilatation, chiral U(1), and SU(2) transformations, e.g., (also see

eqs. (4.2) and (4.3))

Dµεi =
(
∂µ − 1

4ωµ
cd γcd + 1

2 bµ − 1
2 iAµ

)
εi + 1

2 Vµij εj . (A.3)
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Weyl multiplet parameters

field eµ
a ψiµ bµ Aµ Vµij T ijab χi D ωabµ fµ

a φiµ εi ηi

w −1 −1
2 0 0 0 1 3

2 2 0 1 1
2 −1

2
1
2

c 0 −1
2 0 0 0 −1 − 1

2 0 0 0 −1
2 −1

2 −1
2

γ5 + + − + −
Table 1: Weyl and chiral weights (w and c, respectively) and fermion chirality (γ5) of the Weyl multiplet

component fields and the supersymmetry transformation parameters.

Tensor multiplet

field Eµν Lij ϕi G FIJ

w 0 2 5
2 3 -2

c 0 0 −1
2 1 0

γ5 −
Table 2: Weyl and chiral weights (w and c, respectively)

and fermion chirality (γ5) of the tensor multiplet component

fields.

Vector multiplet

field X Ωi Wµ Yij
w 1 3

2 0 2

c −1 −1
2 0 0

γ5 +

Table 3: Weyl and chiral weights (w and c, respectively)

and fermion chirality (γ5) of the vector multiplet component

fields.

The supercovariant curvature tensors4 used here as well as in the main part of the

paper are defined as

Rµν
a(P ) = 2 ∂[µ eν]

a + 2 b[µ eν]
a − 2ω[µ

ab eν]b − 1
2 (ψ̄[µ

iγaψν]i + h.c.) ,

Rµν
i(Q) = 2D[µψν]

i − γ[µφν]
i − 1

8 T
abij γab γ[µψν]j ,

Rµν(A) = 2 ∂[µAν] − i
(

1
2 ψ̄µ

iφν]i + 3
4 ψ̄[µ

iγν]χi − h.c.
)
,

Rµν
i
j(V) = 2 ∂[µVν]

i
j + V[µ

i
k Vν]

k
j + 2(ψ̄[µ

i φν]j − ψ̄i[µ φν]
j)− 3(ψ̄[µ

iγν]χj − ψ̄[µjγν]χ
i)

− δj i(ψ̄[µ
k φν]k − ψ̄[µk φν]

k) + 3
2δj

i(ψ̄[µ
kγν]χk − ψ̄[µkγν]χ

k) ,

Rµν
ab(M) = 2 ∂[µων]

ab − 2ω[µ
acων]c

b − 4f[µ
[aeν]

b] + 1
2(ψ̄[µ

i γab φν]i + h.c.)

+ (1
2 ψ̄[µ

i T abij φν]
j − 3

4 ψ̄[µ
i γν] γ

abχi − ψ̄[µ
i γν]R

ab
i(Q) + h.c.) ,

Rµν(D) = 2 ∂[µbν] − 2f[µ
aeν]a − 1

2 ψ̄[µ
iφν]i + 3

4 ψ̄[µ
iγν]χi − 1

2 ψ̄[µiφν]
i + 3

4 ψ̄[µiγν]χ
i .

(A.4)

4We corrected a typo in [35] in the definition of Rµν(D).
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The remaining curvature tensors, Rµν
i(S) and Rµν

a(K), are not needed here, but may be

found in [35]. There are three conventional constraints,

Rµν(P ) = 0 ,

γµ
(
Rµν(Q)i + 1

2γµνχ
i
)

= 0 ,

eνbRµν(M)a
b − iR̃µa(A) + 1

8TabijTµ
bij − 3

2D eµa = 0 ,

(A.5)

which determine the fields ωµ
ab, φµ

i and fµ
a. We only used the expressions,

φµ
i = 1

2

(
γρσγµ − 1

3γµγ
ρσ
) (
Dρψσi − 1

16T
abijγabγρψσj + 1

4γρσχ
i
)
,

fµ
µ = 1

6R−D −
(

1
12e
−1εµνρσψ̄µ

i γνDρψσi − 1
12 ψ̄µ

iψν
jT µνij − 1

4 ψ̄µ
iγµχi + h.c.

)
.

(A.6)

When combining the conventional constraints with the various Bianchi identities one es-

tablishes that the curvatures are not all independent. For instance we note the relation,

R̃µν(D)− iRµν(A) = 0 . (A.7)

For convenience, the Weyl and chiral weights together with the chirality of the spinors

belonging to the Weyl, tensor and vector multiplet, are summarized in the tables 1, 2 and 3,

respectively.
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